Plasmalemma permeability and necrotic cell death phenotypes after intracerebral hemorrhage in mice.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Traumatic and ischemic brain injury induce plasmalemma permeability and necrosis; however, no studies have examined these aspects of cellular injury in intracerebral hemorrhage models. METHODS In vivo propidium iodide (PI) and YOYO-1 were used to assess plasmalemma damage after collagenase-induced intracerebral hemorrhage in mice. Ex vivo aspartylglutamylvalylaspartic acid, terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling, and electron microscopy were used to assess the relationship between plasmalemma permeability and mode of cell death. Cell types vulnerable to plasmalemma damage were determined by immunohistochemistry. RESULTS Plasmalemma permeability was first detected in the lesion at 1 to 3 hours and peaked at 48 to 72 hours. Neurons and IBA-1-positive cells with morphological features of monocytes were sensitive, whereas resident microglia and astrocytes were resistant to plasmalemma permeability. PI+ cells colocalized with fluorescent-labeled caspase substrates and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling beginning at 3 to 6 hours. At 48 hours, greater than half of injured cells were PI+/aspartylglutamylvalylaspartic acid- or PI+/terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling- suggesting necrosis, and <5% were PI-/terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling+ or PI-/aspartylglutamylvalylaspartic acid+. Electron microscopy confirmed ultrastructural features of necrosis at 24 hours after intracerebral hemorrhage, high mobility group box protein-1 was released from permeable cells, and mice deficient in receptor interacting protein kinase (RIPK) 3, a known necrosis trigger, had 50% less PI+ cells at 24 hours. Permeable cells remained in the brain for at least 24 hours with <10% spontaneous resealing. CONCLUSIONS Necrosis contributes to cell demise after intracerebral hemorrhage. Programmed necrosis and plasmalemma damage may represent novel therapeutic targets to prevent cell death or rescue injured cells after intracerebral hemorrhage.
منابع مشابه
Hydrogen inhalation ameliorated mast cell-mediated brain injury after intracerebral hemorrhage in mice.
OBJECTIVE Hydrogen inhalation was neuroprotective in several brain injury models. Its mechanisms are believed to be related to antioxidative stress. We investigated the potential neurovascular protective effect of hydrogen inhalation especially effect on mast cell activation in a mouse model of intracerebral hemorrhage. DESIGN Controlled in vivo laboratory study. SETTING Animal research lab...
متن کاملNeuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis
Although intracerebral hemorrhage (ICH) accounts for ≈15% of all strokes, it has the highest mortality rates among stroke subtypes, with ≤50% within 30 days after the insult. Treatment options are lacking, and translation of findings from the laboratory bench to the human bedside has been limited. In ICH, a hydrostatic jet of blood emerging from the ruptured vessel causes direct tissue destruct...
متن کاملTherapeutic Benefit of Intravenous Administration of Human Umbilical Cord Blood- Mononuclear Cells Following Intracerebral Hemorrhage in Rat
Objective(s) Human umbilical cord blood (HUCB) is now considered as a valuable source for stem cell–based therapies. Previous studies showed that intravascular injection of the HUCB significantly improves neurological functional recovery in a rat model of intracerebral hemorrhage (ICH). In the present study, we hypothesize transplanted HUCB derived mononuclear cells (UC-MCs) can decrease injur...
متن کاملP84: Effect of Insulin-Like Growth Factor 2 (IGF2) as a Microglia-Derived Anti-Iinflammatory Ccytokine on Improving Memory Impairment Following Hippocampal Intracerebral Hemorrhage in Rat
Insulin-like growth factor 2 (IGF2) as a microglia-derived anti-inflammatory cytokine has a pivotal activity in memory consolidation. However, there is limited evidence on brain cell-originated IGF2 expression, regulation and function in pathological condition and neuro-inflammation. Hence, the present study was conducted to investigate the effect of IGF2 on improving the memory impairment in a...
متن کاملNeuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis.
BACKGROUND AND PURPOSE Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product hemin from lysed red blood cells. The aim of this study was to identify the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 43 2 شماره
صفحات -
تاریخ انتشار 2012